Сколько весит лист меди. Удельная плотность и удельный вес меди. Единицы измерения удельного веса

Плотность меди (чистой), поверхность которой имеет красноватый, а в изломе розоватый оттенок, высока. Соответственно, этот металл обладает и значительным удельным весом. Благодаря своим уникальным свойствам, в первую очередь отличной электро- и , медь активно используется для производства элементов электронных и электрических систем, а также изделий другого назначения. Кроме чистой меди, большое значение для многих отраслей промышленности имеют и ее минералы. Несмотря на то что в природе таких минералов существует более 170-ти видов, активное применение нашли только 17 из них.

Значение плотности меди

Плотность данного металла, которую можно посмотреть в специальной таблице, имеет значение, равное 8,93*10 3 кг/м 3 . Также в таблице можно увидеть и другую, не менее важную, чем плотность, характеристику меди: ее удельный вес, который тоже равен 8,93, но измеряется в граммах на см 3 . Как видите, у меди значение этого параметра совпадает со значением плотности, но не стоит думать, что это характерно для всех металлов.

Плотность этого, да и любого другого металла, измеряемая в кг/м 3 , напрямую влияет на то, какой массой будут обладать изделия, изготовленные из данного материала. Но для определения массы будущего изделия, изготовленного из меди или из ее сплавов, к примеру, из латуни, удобнее пользоваться значением их удельного веса, а не плотности.

Расчет удельного веса

На сегодняшний день разработано множество методик и алгоритмов измерения и расчета не только плотности, но и удельного веса, позволяющих даже без помощи таблиц определять этот важный параметр. Зная удельный вес, который у разных и чистого металла отличается, как и значение плотности, можно эффективно подбирать материалы для производства деталей с заданными параметрами. Такие мероприятия очень важно выполнять на стадии проектирования устройств, в составе которых планируется использовать детали, изготовленные из меди и ее сплавов.

Удельный вес, значение которого (как и плотности) можно посмотреть и в таблице - это отношение веса изделия, изготовленного как из металла, так и из любого другого однородного материала, к его объему. Выражается это отношение формулой γ=P/V, где буквой γ как раз и обозначается удельный вес.

Нельзя путать удельный вес и плотность, которые являются разными характеристиками металла по своей сути, хоть и обладают одинаковым значением для меди.

Зная удельный вес меди и используя формулу для расчета этой величины γ=P/V, можно определить массу медной заготовки, имеющей различной сечение. Для этого необходимо перемножить значение удельного веса для меди и объем рассматриваемой заготовки, определить который расчетным путем не представляет особой сложности.

Единицы измерения удельного веса

Для выражения удельного веса меди в различных системах измерения используются различные единицы.

  • В системе СГС данный параметр измеряется в 1 дин/см 3 .
  • В системе СИ принята единица измерения 1н/м 3 .
  • В системе МКСС используется единица измерения 1 кГ/м 3 .

Если вы столкнулись с различными единицами измерения этого параметра меди или ее сплавов, то не представляет сложности перевести их друг в друга. Для этого можно использовать простую формулу перевода, которая выглядит следующим образом: 0,1 дин/см 3 = 1 н/м 3 = 0,102 кГ/м 3 .

Расчет веса с использованием значения удельного веса

Чтобы вычислить вес заготовки, нужно определить площадь ее поперечного сечения, а затем умножить его на длину детали и на удельный вес.

Пример 1:

Рассчитаем вес прутка из медно-никелевого сплава МНЖ5-1, диаметр которого составляет 30 миллиметров, а длина — 50 метров.

Площадь сечения вычислим по формуле S=πR 2 , следовательно: S = 3,1415 · 15 2 = 706,84 мм 2 = 7,068 см 2

Зная удельный вес медно-никелевого сплава МНЖ5-1, который равен 8,7 гр/см 3 , получим: М = 7,068 · 8,7 · 5000 = 307458 грамм = 307,458 кг

Пример 2

Вычислим вес 28-ми листов из медного сплава М2, толщина которых составляет 6 мм, а размеры 1500х2000 мм.

Объем одного листа составит: V = 6 · 1500 · 2000 = 18000000 мм 3 = 18000 см 3

Теперь, зная, что удельный вес 1 см 3 меди марки М3 равен 8,94 гр/см 3 , можем узнать вес одного листа: M = 8,94 · 18000 = 160920 гр = 160,92 кг

Масса всех 28-ми листов проката составит: М = 160,92 · 28 = 4505,76 кг

Пример 3:

Вычислим вес прута квадратного сечения из медного сплава БрНХК длиной 8 метров и размер стороны 30 мм.

Определим объем всего проката: V = 3 · 3 · 800 = 7200 см 3

Удельный вес указанного жаропрочного сплава равен 8,85 гр/см 3 , следовательно общий вес проката составит: М = 7200 · 8,85 = 63720 грамм = 63,72 кг

Медь представляет собой элемент четвертого периода одиннадцатой группы соответствующей таблицы элементов. Медь в простом виде - это пластичный материал переходного типа розового или золотистого оттенка.

Медь является одним из самых первых, освоенных человеком материалов, благодаря малой температуре плавления и массовой доступности. Этот материал закрывает семерку металлов, освоенных еще в далекие времена. Встречается медь в виде самородков чаще, чем железо, серебро или золото. Химической название меди - Cuprum, произошедшие от названия острова Кипр.

Таблица удельного веса меди

Так как, медь является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом средний удельный вес меди известен и равен диапазону от 8,63 до 8,8 г/см3.

Чтобы провести расчет веса меди и для упрощения подсчетов ниже представлена таблица с значениями удельного веса и такого параметра как вес меди в зависимости от единиц исчисления.

Свойства меди

Медь является металлом пластичного типа с розовым или золотистым оттенком. При взаимодействии с воздухом покрывается пленкой оксидного типа красного или желтоватого оттенка, при просвете - голубо-зеленоватого цвета.

Данный вид материалов, наряду с цезием, золотом и осмием, является металлом, имеющим цветовую окраску явного типа, отличающеюся от серебристой или серый других металлов. Медь образует гранецентрированную решетку кубического типа.

Этот материал обладает отличной проводимостью электричества, занимая второе место по этому параметру после серебра, а также проводимость тепла. Медь имеет высокий коэффициент температурного сопротивления, который слабо зависит от температурного режима. Медь относят к группе диамагнетиков.

Медь, также, применяется в составе сплавов цинка и латуни, олова и бронзы, никеля и мельхиора, а также некоторых других.

Данный элемент не подвержен воздействию воздуха при отсутствии диоксида углерода и влаги. Медь - это слабый восстановитель, не реагирующий с разбавленной соляной кислотой и водой. Переходит в состояние раствора кислотами неокислительного типа или гидратом аммиака с кислородом, калием и цианидом. Хорошо окисляется при взаимодействии с азотной и серной кислотой, кислородом, халькогенами, оксидами неметаллов, царской водкой и галогенами. При нагревании вступает в реакцию с галогеноводородами.

Медь широко применяется еще с давних времен. Ее отличительные свойства до сих пор являются одними из самых лучших, что в свою очередь делает медь, одним из самых массово используемых материалов. Из основных сфер применения стоит выделить:

  • Использование в электротехнике для изготовления различного рода проводов, кабелей и другого вида проводников
  • Использование меди в создании разного вида теплоотводящих устройствах и теплообменниках
  • Производство труб из меди
  • Использование меди в различного рода сплавах
  • Использование меди в ювелирных сплавах
  • Изготовление сверхпроводников
  • Применение как катализатор ацетилена
  • Широкое использование в архитектурных работах
  • ООО”РостАлпроф” это: Складской комплекс, который позволяет хранить до 500 т металлопродукции, отгрузка производится 5-ти тонным мостовым краном и погрузчиком в короткие сроки, все документы оформляются заранее.Работаем по РФ, есть возможность отгрузки из г.Москвы и г.Санкт Петербурга.

    Алюминиевый рулон АД1Н 0,5*1200 (950 кг) в наличии!!! Медные, латунные листы из наличия!!! Алюминиевая фольга 0.1 мм, 0.05 мм в наличии!!! Плита Д16 70х355х545 (39,55кг) Плита Д16 160х270х355 (44,33кг) 35х255х355 (7,6кг) Плита Д16Т 15х100х510 (2,8кг) / 8х100х505 (1,4кг) Плита Д16Т 100х500х680 (98кг) Д16Т квадрат 100х100х505 (14,25кг) ООО"РОСТАЛПРОФ"

    Алюминиевый лист 1105АН2 0,8*1200*3000 (758 кг) по 2300 р за лист!!! Алюминиевые рифленые листы все размеры все толщины из наличия!!! Плита В95 40х120х302 В95Т 35х255х288 / 40х205х260 / 40х255х98 / 40х250х97 Плита Д16Т 60*200*830 (32,7 кг) Д16Т 30*200*830 (16,05 кг) Плита Д16Т 43*198*830 (20,05 кг) Д16Т 45*198*830 (27,7 кг) Плита В95 ПЧТ2 80х257х740 8-863-207-29-64, 207-28-83, 207-01-91

    Плотность меди, удельный вес меди, рассчитать лист, пруток в Ставрополе

    В данном разделе представлены основные характеристики меди, как основного элемента применяемого в производстве электроники и электротехники в Ставрополе. Расчет плотности и удельного веса меди необходимо производить с помощью следующих параметров:

    Плотность – 8,93*10 3 кг/м 3 ;
    Удельный вес – 8,93 г/cм 3 ;
    Удельная теплоемкость при 20 °C – 0,094 кал/град;
    Температура плавления – 1083 °C ;
    Удельная теплота плавления – 42 кал/г;
    Температура кипения – 2600 °C ;
    Коэффициент линейного расширения (при температуре около 20 °C) – 16,7 *10 6 (1/град);
    Коэффициент теплопроводности – 335ккал/м*час*град;
    Удельное сопротивление при 20 °C – 0,0167 Ом*мм 2 /м;

    Для расчета веса медного листа, прутка или шины воспользуйтесь разделом

    Так же можем рассчитать например вес медного листа или плиты на калькуляторе.Умножаем толщину листа на ширину на длину и удельный вес меди в итоге получим теоретический вес медного листа.Пример: медный лист М1 1*600*1500 (1х0.6х1.5х8.93= 8.037 кг).

    Рассмотрим основные физические свойства меди.

    Плотность меди, удельный вес меди и другие характеристики меди Плотность меди - 8,93*103кг/м3; Удельный вес меди - 8,93 г/cм3; Удельная теплоемкость меди при 20oC - 0,094 кал/град; Температура плавления меди - 1083oC ; Удельная теплота плавления меди - 42 кал/г; Температура кипения меди - 2600oC (2877 0 C); Коэффициент линейного расширения меди (при температуре около 20oC) - 16,7 *106(1/град); Коэффициент теплопроводности меди - 335ккал/м*час*град; Удельное сопротивление меди при 20oC - 0,0167 Ом*мм2/м.

    Основные физические и механические свойства меди: Атомная масса 63 Плотность при 20°С, г/см3 8, 96 Температура, °С: плавления 1083 кипения 2600 Удельная теплоёмкость, ккал/г 0,092 Теплопроводность кал/ (см. сек. град) 0,941 Скрытая теплота плавления, кал/г 43, 3 Коэффициент линейного расширения, 1/град 0,000017 Удельное электросопротивление, Ом. мм2/м 0,0178 Временное сопротивление меди, кг,/мм2: деформированной 40 - 50 отожжённой 20 - 24 Предел текучести меди, кг/мм2 , при температуре, °С: 20°С - 7 200°С - 5 400°С - 1,4 Относительное удлинение меди, % деформированной 4 - 6 отожжённой 40 - 50 Предел упругости меди, кг/мм2: деформированной 30 отожжённой 7 Модуль упругости, кг/мм2 13200 Модуль сдвига, кг/мм2 4240 Предел усталости меди при переменно-изгибающих напряжениях на базе 108 циклов, кг/мм2: деформированной 11 отожжённой 6,7 Твёрдость НВ меди, кг/мм2: деформированной 90 - 120 отожжённой 35 - 40

    Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и более плотной компоновкой атомов в кристаллической решетке. Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например, пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. Структура материала допускает значительное усложнение посредством образования более длинных кристаллов. Этим увеличивается общая структура с образованием нечто подобного «арматуре» железобетона.

    Техническая медь имеет низкую прочность и износоустойчивость, плохие литейные и антифрикционные свойства. Этих недостатков лишены сплавы на медной основе - латуни и бронзы. Правда эти улучшения достигаются за счет ухудшения тепло- и электропроводности. Имеются особые случаи, когда нужно сохранить высокую электро- или теплопроводность меди, но придать ей жаропрочность или износоустойчивость. При нагревании меди выше температуры рекристаллизации происходит резкое снижение предела текучести и твердости. Это затрудняет использование меди в электродах для контакной сварки. Поэтому, для этой цели используют специальные медные сплавы с хромом, цирконием, никелем, кадмием (БрХ, БрХЦр, БрКН, БрКд). Электродные сплавы сохраняют относительно высокую твердость и удовлетворительную электро- и теплопроводность при температурах сварочного процесса (порядка 600С). Жаропрочность достигается также легированием серебром. Такие сплавы (МС) имеют меньшую ползучесть при неизменной электро- и теплопроводности. Для использования в подвижных контактах (коллекторные пластины, контактный провод) применяют медь с небольшим уровнем легирования магнием или кадмием БрКд, БрМг. Они имеют повышенную износоустойчивость при высокой электропроводности. Для кристаллизаторов используют медь с добавками железа или олова. Такие сплавы имеют высокую теплопроводность при повышенной износоустойчивости. Низколегированные марки меди по сути являются бронзами, но часто их относят к группе медного проката с соответствующей маркировкой.

    Медь - один из самых первых металлов, которые освоил человек. В природе она встречается в качестве самородков, имеющих крупные размеры. С незапамятных времен ее использовали как сплав с оловом, называемый бронзой, для изготовления оружия, предметов домашней утвари и украшений. Такое активное применение металла объясняется простотой обработки.

    Физические и механические свойства меди

    Медь - это металл красно-розового цвета с золотистым отливом, занимающий в таблице химических элементов 29-е место и имеющий плотность 8,93 кг/м 3 . Удельный вес меди составляет 8,93 г/см 3 , температура кипения - 2657, а плавления - 1083 градусов по Цельсию.

    Этот металл имеет высокую пластичность, мягкость и тягучесть. Располагая высокой вязкостью, он отлично куется. Медь относится к достаточно тяжелым и прочным металлам. В чистом виде она хорошо проводит тепло и электричество (уступает только серебру).

    Химические свойства металла

    Химические характеристики, как и механические, магнитные и физические свойства, такие как пластичность, вязкость, удельный вес меди, имеют актуальное значение. Металл обладает малой химической активностью. При небольшой влажности и нормальной температуре у нее высокая коррозийная устойчивость. При нагревании окисляется, образуя оксиды. Во влажной среде, содержащей углекислый газ, медная поверхность покрывается зеленоватой пленкой, содержащей оксид и карбонат металла. Медь вступает в реакцию с галогенами, образуя соли, при комнатной температуре. Легко взаимодействует с серой и селеном. Прекрасно растворяется в азотной и подогретой концентрированной серной кислоте. Без доступа кислорода с разбавленной серной и соляной кислотой не реагирует.

    Плотность меди

    Значение этой величины, содержащееся в специальной таблице, составляет 8,93*10 3 кг/м3. Удельный вес меди - не менее важная величина, характеризующая металл. Он составляет, как уже было сказано 8,93 г/см 3 .

    Получается, что значение величин параметров плотности и удельного веса для данного металла совпадают, что не характерно для других материалов. От зависит вес изделия, изготовленного из него. Для расчетов массы будущей детали обычно пользуются удельным весом, а не плотностью.

    Удельный вес металла

    Эта величина, как и плотность, является важным показателем различных материалов, который определяют по имеющимся таблицам. По величине удельного веса меди и ее сплавов можно выгодно подобрать соответствующие металлы для изготовления изделия с заданными параметрами. Такие расчеты обычно проводят на стадии проектирования. Удельный вес как физическая величина вычисляется отношением веса вещества к его объему. Не следует путать эту величину с плотностью, как массу с весом. Зная удельный вес меди или сплава, всегда можно вычислить массу изделия из данного материала.

    Основные медные сплавы, используемые в промышленности

    По технологическому процессу изготовления медные сплавы делятся на литейные и деформируемые, а в зависимости от химического состава - на бронзы и латуни. В последней основой является медь и цинк, могут быть добавлены и другие элементы. Бронзы - это сплав меди (удельный вес 8,93 г/см 3) с другими металлами. Выбор легирующего компонента зависит от конкретного использования изделия.

    • Оловянная бронза. При производстве применяют закалку и старение для увеличения пластичности и прочности.
    • Алюминиевая бронза. Обладает антикоррозийными свойствами, отлично деформируется.
    • Свинцовый сплав. Имеет превосходные антифрикционные свойства.
    • Латунь. Может состоять из двух или нескольких компонентов.
    • Медно-никелевый сплав, содержащий цинк. По свойствам и внешнему виду напоминает мельхиор.
    • Сплав меди с железом. Основное его отличие - высокая пористость.

    Удельный вес электротехнической меди

    Такой она получается после очистки от примесей. Самое малое содержание каких-либо металлов в ней значительно снижает ее электропроводность. Так, например, содержание 0,02 % алюминия понижает проводимость до 10 %, несмотря на то, что этот металл неплохо проводит электрический ток. Самыми важными характеристиками материала являются:

    • удельный вес меди;
    • сопротивление электрическое;
    • температура плавления.

    Для нужд электротехники используют технически чистый металл, который содержит от 0,02 до 0,04 % кислорода, а изделия с высокой проводимостью тока изготавливают из особой, бескислородной меди. Для электротехнических изделий (обмотки трансформаторной, провода, кабельной жилы, шин электротехнических) используют разные сорта металла.

    Применение меди и ее сплавов в народном хозяйстве

    Высокая прочность, удельный вес меди, отличная электропроводность, хорошая механическая обрабатываемость - все это позволяет использовать ее во многих сферах производства:

    • Строительная - прекрасно совмещается с кирпичом, деревом, стеклом, камнем. Имеет длительный срок службы, не боится коррозии.
    • Электротехническая - провода, кабели, электроды, шины.
    • Химическая - изготавливают детали для аппаратуры и инструменты.
    • Металлургическая - производство сплавов. Самый востребованный - латунь. Она тверже меди, хорошо куется, обладает вязкостью. Из нее штампуют различные формы и прокатывают в тонкие листы.
    • Художественная - медные чеканки, бронзовые статуи.
    • Бытовая - использование для изготовления посуды, труб.

    Медные руды

    В природных условиях медь чаще всего встречается в соединениях, но попадается и в виде самородков. К минералам, которые являются основными ее источниками, относятся:

    • Куприт - минерал оксидной группы.
    • Малахит - известен как поделочный камень, содержит карбонат меди. Российский малахит - углекислая медная зелень пользуется большой популярностью.
    • Азурит - синего цвета минерал, часто сращивается с малахитом, обладает высокой твердостью.
    • Медный колчедан и медный блеск - содержат сульфид меди.
    • Ковеллин - относится к сульфидным породам, первоначально был обнаружен около Везувия.

    Медные руды добывают, в основном, открытым способом. В них может содержаться 0,4-1,0 % меди. По ее производству мировым лидером является Чили, дальше следуют Соединенные Штаты Америки, Россия, Канада, Казахстан.

    Похожие публикации